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A B S T R A C T   

Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring ap-
proaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization 
across datasets. This study leveraged satellite imagery from Maxar’s WorldView-2 and WorldView-3 high spatial 
resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass 
at eleven study areas across the continental United States, representing geographically, ecologically, and 
climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond 
temporally to reference data representing seagrass coverage and was classified into four general classes: land, 
seagrass, no seagrass, and no data. Satellite-derived seagrass coverage was then compared to reference data using 
either balanced agreement, the Mann-Whitney U test, or the Kruskal-Wallis test, depending on the format of the 
reference data used for comparison. Balanced agreement ranged from 58% to 86%, with better agreement be-
tween reference- and satellite-indicated seagrass absence (specificity ranged from 88% to 100%) than between 
reference- and satellite-indicated seagrass presence (sensitivity ranged from 17% to 73%). Results of the Mann- 
Whitney U and Kruskal-Wallis tests demonstrated that satellite-indicated seagrass percentage cover had mod-
erate to large correlations with reference-indicated seagrass percentage cover, indicative of moderate to strong 
agreement between datasets. Satellite classification performed best in areas of dense, continuous seagrass 
compared to areas of sparse, discontinuous seagrass and provided a suitable spatial representation of seagrass 
distribution within each study area. This study demonstrates that the same methods can be applied across scenes 
spanning varying seagrass bioregions, atmospheric conditions, and optical water types, which is a significant step 
toward developing a consistent, operational approach for mapping seagrass coverage at the national and global 
scales. Accompanying this manuscript are instructional videos describing the processing workflow, including 
data acquisition, data processing, and satellite image classification. These instructional videos may serve as a 
management tool to complement field- and aerial-based mapping efforts for monitoring seagrass ecosystems.  
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1. Introduction 

Seagrasses are the only fully submerged marine angiosperms, having 
evolved from terrestrial plants approximately 100 million years ago. 
Seagrasses offer a variety of ecosystem services, detailed at length in 
Cullen-Unsworth and Unsworth (2013) and summarized here. Sea-
grasses promote sedimentation and reduce shoreline erosion (Chris-
tianen et al., 2013) by reducing wave action (Fonseca and Cahalan, 
1992); provide habitats (Bertelli and Unsworth, 2014) and food re-
sources (Prado et al., 2008) for fish, marine megafauna (Sievers et al., 
2019), and invertebrates (Beck et al., 2001); mitigate ocean acidification 
(Hendriks et al., 2014; Koweek et al., 2018); and both store and filter 
nutrients, including carbon (Fourqurean et al., 2012), nitrogen, and 
phosphorus (Saderne et al., 2020). There are approximately 70 known 
species of seagrasses found along the shores of every continent except 
Antarctica, ten species of which are at an elevated risk of extinction 
(Short et al., 2011). Effective monitoring is critical for managing and 
protecting seagrasses and their ecosystem services (Bell et al., 2007; 
Duarte, 2002; Neckles et al., 2012). 

The United States has approximately 55,000 km of marine coastline 
(U.S. Census Bureau, 2015), 20% of which has been mapped for seagrass 
coverage, primarily in the Chesapeake Bay and along the coasts of 
Florida, North Carolina, and New England (CEC, 2021). Only a few 
coastal locations in the United States conduct regular seagrass mapping. 
The Virginia Institute of Marine Science (VIMS) has mapped much of the 
Chesapeake Bay via aerial imagery annually since 1984. Seagrasses in 
North Carolina are monitored under the auspices of the Albemarle 
Pamlico National Estuary Partnership, with much of the North Carolina 
coast mapped in 2006 through 2007 and in 2013 (Field et al., 2021). The 
Washington State Department of Natural Resources has produced 
near-annual maps of portions of the Puget Sound since 2000 (PSEMP, 
2015). In Florida, both the Indian River Lagoon and Florida’s Suncoast 
are mapped every two years and Florida’s Springs Coast is mapped every 
four years. The Massachusetts Department of Environmental Protection 
(MassDEP) has taken a multi-phase approach to mapping eelgrass along 
the Massachusetts coast since 1995 (Costello and Kenworthy, 2011). The 
Maine Department of Marine Resources mapped seagrass in 1997, 2010, 
and is currently working to update these mapping efforts as early as 
2023. 

Across the United States, several policies are in place to manage 
coastal seagrass habitats, with a particular emphasis on seagrass pro-
tection and monitoring. Seagrass are considered a wetland under Section 
404 of the Clean Water Act, which regulates the discharge of dredged 
and fill material into United States waters (33 U.S.C. § 1323). At the state 
level, legislation in Texas (TX Parks & Wild. § 66.024, 2013), New York 
(NY Env Cons L § 13–0705, 2019), Washington (WAC 220-660-350), and 
Florida (Fla. Stat. § 253.04, 2012) protects the destruction of seagrass 
habitats, and California has a policy requiring seagrass monitoring 
(NOAA Fisheries, 2014). The Chesapeake Bay, whose watershed en-
compasses parts of six states, requires annual surveys of its seagrasses 
(33 U.S.C. § 1267). Several states and tribes have adopted wetland 
protection programs, which include protections for seagrass ecosystems 
(ELI, 2007a, 2007b, 2006; Thomas et al., 2005), and many federally 
designated estuaries included in the U.S. Environmental Protection 
Agency’s National Estuary Program have supported seagrass monitoring 
and restoration efforts (Field et al., 2021; U.S. EPA, 2005). Additionally, 
eelgrass has been selected as one of twenty-five vital signs used in 
Washington State to track progress in the restoration and recovery of 
Puget Sound (Puget Sound Partnership, 2019). Yet, a recent review 
found that global management efforts are currently failing to adequately 
protect seagrass meadows (Griffiths et al., 2020). One of the five pri-
orities recommended for improved management efforts was consistent 
monitoring of seagrass abundance and distribution across the submarine 
landscape. 

Seagrass distributions have been mapped using ground-based field 
observations, towed underwater videography, acoustic technology, 

photointerpretation of aerial imagery, or some combination of these 
methods. Additional methods for mapping seagrass coverage have been 
established that rely on satellite platforms (Veettil et al., 2020), which 
can complement traditional seagrass mapping efforts. Satellite platforms 
benefit from frequent image acquisition and repeatability across time 
and space; additionally, satellite imagery can be cost effective for end 
users compared to traditional seagrass mapping methods, particularly 
across large spatial and temporal scales (Coffer et al., 2020; Dekker 
et al., 2006; Kohlus et al., 2020). Recent advancements in satellite 
technology have resulted in platforms that provide an unmatched 
combination of temporal and spatial resolution, which is ideal for 
mapping seagrass (Phinn et al., 2008), particularly in heterogeneous 
ecosystems where seagrass patch size is small (Hill et al., 2014). 

Several multispectral satellite platforms now provide sufficiently 
high spatial resolution suitable for mapping seagrass coverage. The 
European Space Agency’s Sentinel-2 satellite platforms offer up to 10-m 
spatial resolution and up to a 5-day revisit period at the equator 
(Traganos et al., 2022a, 2022b). Planet’s RapidEye satellite constella-
tion offered between 5- and 6.5-m spatial resolution and a 5.5-day revisit 
period before being decommissioned in 2020 (Coffer et al., 2020; 
Traganos and Reinartz, 2018), and their PlanetScope satellite constel-
lation offers 3-m spatial resolution and daily revisit frequency (Wicak-
sono and Lazuardi, 2018). Maxar Technologies’ WorldView-2 satellite 
offers 1.84-m spatial resolution and WorldView-3 offers 1.24-m spatial 
resolution; both platforms have a daily revisit frequency, but are tasked 
satellites, meaning data collection is neither continuous nor standard-
ized (Baumstark et al., 2016; Coffer et al., 2020; Lebrasse et al., 2022; 
Roelfsema et al., 2014). Recently, the Chesapeake Bay Program part-
nership, working through its Submerged Aquatic Vegetation Work-
group, the Scientific, Technical Assessment and Reporting Team, and 
Chesapeake Bay Scientific Technical Advisory Committee, began 
exploring the possibility of complementing their aerial photointerpre-
tation efforts with satellite image classifications to reduce costs associ-
ated with continued monitoring of the Chesapeake Bay (Landry et al., 
2021). 

Studies leveraging satellite remote sensing for seagrass mapping 
typically focus on a single study area or satellite image (e.g., Meyer and 
Pu, 2012; Traganos and Reinartz, 2017; Zoffoli et al., 2020). This study 
leveraged high spatial resolution, commercial satellite data from Max-
ar’s WorldView-2 and WorldView-3 platforms to classify seagrass dis-
tributions at eleven coastal study areas across the continental United 
States, making it one of the the first studies to apply consistent methods 
across multiple study areas and satellite images. Our goal is to define a 
uniform, operational framework for mapping seagrass coverage from 
satellite imagery that can be applied at local, national, and even global 
scales. Accompanying this manuscript are instructional videos 
describing the processing workflow applied at each study area, 
including data acquisition, data processing, and satellite image classi-
fication of seagrass presence and absence. These instructional videos 
reduce the disconnect between technical staff and management that 
commonly prevents satellite data from being used for water quality 
management (Schaeffer et al., 2013). This manuscript and the accom-
panying instructional videos can be used as a complementary tool for 
improving efficiency in monitoring seagrass coverage and can assist 
stakeholders in management decision making. 

This study advances satellite remote sensing of seagrass ecosystems 
to the second validation stage outlined by the National Aeronautics and 
Space Administration (NASA) in their definition of data maturity levels 
(NASA, 2022a). Stage 1 Validation describes when a product’s perfor-
mance has been assessed against field programs at a few locations. Stage 
2 Validation describes when a product’s performance has been assessed 
against field programs over additional locations and time periods, 
demonstrating spatial and temporal consistency over globally repre-
sentative locations. While only locations within the United States are 
analyzed here, the study areas represent three of six global seagrass 
bioregions and span a range of climate regions, optical water types, 
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atmospheric conditions, and seagrass species. 

2. Data and methods 

2.1. Study areas 

Eleven study areas were chosen across the continental United States, 
representing geographically, ecologically, and climatically diverse re-
gions (Fig. 1; Table S1). Details of each study area are provided in 
Supplemental Text S1. Each study area is characterized ecologically by 
its global seagrass bioregion and climatically by its United States climate 
region. Six global seagrass bioregions were defined by Short et al. (2007) 
to represent species assemblages, species distributional ranges, and 
tropical and temperate influences. Three of these global seagrass bio-
regions—Temperate North Pacific, Tropical Atlantic, and Temperate 
North Atlantic—include United States coastal waters. Nine climate re-
gions were defined across the conterminous United States by The 

National Centers for Environmental Information (Karl and Koss, 1984) 
to represent climatically consistent states. Five of these climate region-
s—Northwest, West, South, Southeast, and Northeast—include coastal 
states. In addition to ecological and climatic differences across study 
areas, cloud cover, water column properties, and characteristics of the 
littoral zone varied, representing a range of optical complexities (Conmy 
et al., 2017). 

2.2. Reference data delineating seagrass coverage 

A combination of field survey results, observations from towed un-
derwater cameras, and both aerial and satellite photointerpretations 
were used to compare satellite-derived seagrass classification maps to 
local seagrass coverage results (Table 1; Table S2). These datasets 
represent secondary data, meaning data collected by other organizations 
which was made publicly available and used here. When selecting 
reference data at each study area, priority was given to datasets with 

Fig. 1. Map of the study areas. States are grouped by their climate region (gray text) as defined by Karl and Koss (1984). Each study area is also colored by its global 
seagrass bioregion as defined by Short et al. (2007). 
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minimal temporal offsets with satellite imagery acquisition. Compari-
sons between reference data and satellite classifications were made with 
the assistance of local experts to account for seasonal differences or local 
influences; Griffiths et al. (2020) encouraged engagement with local 
coastal management agencies or experts to fill gaps in seagrass moni-
toring efforts. Local seagrass coverage results were available as either 
point or polygon data and seagrass was classified as either seagrass 
presence or seagrass percentage cover, where seagrass percentage cover 
included various density classes depending on the data source 
(Table S2). 

Local seagrass coverage data are hereafter referred to as reference 
data; however, reference data are not error-free, and several limitations 
must be recognized when comparing reference data to our satellite 
image classifications. First, reference data were not always validated 
through on-the-ground measurements. Second, reference data used in 
this study were not contemporaneous with satellite overpass, meaning 
seasonal and annual offsets existed between local data collection and 
satellite image acquisition. Finally, spatial mismatches between data 
collection procedures complicated statistical comparisons because 
reference data were often collected as point or polygon shapefiles, while 
satellite imagery is raster-based. 

2.3. Satellite-estimated seagrass coverage 

2.3.1. Satellite imagery 
Satellite data were obtained from Maxar’s WorldView-2 and 

WorldView-3 commercial satellite platforms (Maxar, 2019) through the 
NASA Commercial Smallsat Data Acquisition Program’s NextView Li-
cense agreement. This agreement between the National 
Geospatial-Intelligence Agency and Maxar makes data from select 
commercial satellite platforms available to the United States Federal 
Government, which may be shared according to the NextView License 
(NASA, 2022b). WorldView-2 was launched in October 2009, 
WorldView-3 was launched in August 2014, and both are still opera-
tional. Each satellite offers six spectral bands in the visible wavelengths 
and two spectral bands in the near-infrared wavelengths (Table S3). 
WorldView-2 data were prioritized over WorldView-3, as WorldView-2 
offers a higher signal-to-noise ratio than WorldView-3, making it more 

appropriate for aquatic applications (Coffer et al., 2022). WorldView-2 
imagery is collected at a spatial resolution of 1.84 m at nadir, where 
nadir is defined as the point on Earth’s surface directly below the sat-
ellite, while WorldView-3 offers a slightly improved spatial resolution of 
1.24 m at nadir. 

Data were obtained from Maxar’s Global Enhanced Geospatial In-
telligence Delivery service (evwhs.digitalglobe.com). For each study 
area, a single scene was selected based on minimal cloud cover, an off- 
nadir view angle to avoid sun glint issues (Vanhellemont, 2019; Van-
hellemont and Ruddick, 2018), and visibly ideal water clarity (Table 1, 
Table S2). While low tide is typically preferred for seagrass mapping, 
satellite data often lacks sufficient temporal coverage to select images 
based on tidal stage (Table S2; Table S4). Prioritization was given to 
satellite scenes that corresponded temporally to reference data 
described in Section 2.2, although exact temporal matches were limited 
due to their inconsistent temporal coverage. Following Coffer et al. 
(2020), each satellite image was processed from Level 1B data to pro-
duce an orthorectified, radiometrically corrected, and atmospherically 
corrected scene as remote sensing reflectances (Rrs) in units of per 
steradian (sr− 1). For atmospheric correction, Coffer et al. (2020) used a 
Rayleigh exponent of 4.75. The same was done for all sites here, with 
three exceptions. At South Padre Island, Texas (TX), Broad Sound, 
Massachusetts (MA), and Nahant Bay, MA, a Rayleigh exponent of 4 was 
used to account for hazy conditions at the time of image acquisition 
(Chavez, 1988; Curcio, 1961; Slater et al., 1983). Satellite data pro-
cessing was performed in Python (Python Core Team, 2015). 

2.3.2. Classifying satellite imagery 
A deep convolutional neural network (DCNN) was used for image 

classification because it provides a good balance between computational 
complexity and model performance (Islam et al., 2018, 2020). A DCNN 
model essentially generates many moving windows across an image to 
identify features such as edges, curves, and colors. The DCNN model 
required some input knowledge for training, which was provided as 
spectral information contained within user-defined regions of interest 
(ROIs). ROIs were defined for every class in each satellite image inde-
pendent of reference data described in Table 1. Instead, ROIs were 
defined based on local expert knowledge, expected spectral shape, and 

Table 1 
Details of seagrass reference data and satellite imagery acquired at each study area. Temporal offset represents the temporal difference between reference data 
collection and satellite imagery acquisition, where a positive offset represents satellite imagery collected after reference data. See also Table S2.  

Study area Reference data source Reference data collection 
period 

Satellite imagery 
source 

Satellite imagery 
acquisition date 

Temporal 
offset 

Izembek Lagoon, AK CECa 2002 to 2006 WorldView-2 12 Sept 2018 +12 to 16 
years 

Padilla Bay, WA WADNRb June and July 2017 WorldView-2 28 Oct 2017 +3 to 4 
months 

Elkhorn Slough, CA ESFc and Elkhorn Slough National Estuarine 
Research Reserve 

Summer 2018 WorldView-2 25 Oct 2018 +2 to 5 
months 

South Padre Island, TX Texas seagrass monitoring program Late summer to Sept 2012 WorldView-2 1 Aug 2012 ±0 to 1 month 
Tampa Bay, FL SFWMDd January 2016 WorldView-2 17 Nov 2016 +10 months 
Back Sound, NC NCDEQe May 2013 WorldView-2 27 Mar 2013 -2 months 
Mobjack Bay, VA VIMSf May to Nov 2015 WorldView-2 4 May 2015 -0 to 6 months 
Tangier Sound, MD VIMS May to Nov 2017 WorldView-2 25 Sept 2017 ±0 to 4 

months 
Belmont Bay, VA VIMS Summer 2019 WorldView-2 29 Sept 2019 +1 to 4 

months 
Broad Sound, MA MassDEPg 2016 WorldView-3 7 June 2021 +5 years 
Nahant Bay, MA MassDEP 2016 WorldView-3 7 June 2021 +5 years  

a Commission for Environmental Cooperation; data from Hogrefe et al. (2014). 
b Washington State Department of Natural Resources. 
c Elkhorn Slough Foundation. 
d Southwest Florida Water Management District. 
e North Carolina Department of Environmental Quality. 
f Virginia Institute of Marine Science. 
g Massachusetts Department of Environmental Protection. 
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visual confirmation. This DCNN model was successfully used to classify 
seagrass using satellite imagery from WorldView-2, WorldView-3, 
RapidEye, and Landsat 5 through 8 (Coffer et al., 2020; Lebrasse et al., 
2022), and was developed using the Keras package in Python (Chollet, 
2015). 

Optical properties of the water column and characteristics of the 
littoral zone varied across study areas. Thus, a unique collection of 
classes was defined for each study area, which was then collapsed into 
four general classes—seagrass, no seagrass, land, and no data—to allow 
for comparisons across study areas (Table S5). The no seagrass category 
represented satellite pixels in which the littoral zone was visible but did 
not contain seagrass. The no data category represented satellite pixels in 
which the water column was obfuscated, producing a detectable Rrs 
signal but preventing characterization of the aquatic substrate. Satellite 
pixels categorized as no data did not preclude the presence of seagrass, 
meaning that seagrass could be present for those satellite pixels, but was 
not visible for the given satellite image. Some satellite images did not 
require a no data class because water clarity and depth made the entire 
aquatic substrate visible. Currently, multispectral satellite data is 
insufficient for differentiating seagrass from spectrally similar habitats 
such as algae (Kutser et al., 2020). Additionally, algal and seagrass 
habitats are often intermixed, further complicating their optical sepa-
ration. Yet algae can be an important driver of seagrass coverage along 
the eutrophication gradient (Han et al., 2016). While recent research 
efforts have attempted to spectrally separate seagrass and algae (Kuh-
wald et al., 2022), reference data used here did not categorize algae 
across all study areas and therefore was not considered as a separate 
class in the image classification. 

2.4. Comparing satellite and reference data 

Agreement was assessed between satellite and reference data, 
although there are inherent differences in reference data collection 
methods and satellite image classification which can limit comparability 
between datasets. Depending on the study area, reference data were 
available as either points or polygons that specified either seagrass 
presence or seagrass percentage cover (Table S2). As such, agreement 
was quantified differently depending on the seagrass classification type 
and spatial data type of the reference data (Fig. 2). Satellite pixels 
classified as no data were excluded before comparison. Note, the term 
agreement is used throughout in place of accuracy as both the satellite 
and reference datasets being compared represent observations that have 
not always been validated through independent ground-based 
measurements. 

2.4.1. Reference data indicating seagrass presence 
Reference data obtained for Izembek Lagoon, Alaska (AK), Padilla 

Bay, Washington (WA), Elkhorn Slough, California (CA), Broad Sound, 
MA, and Nahant Bay, MA, specified seagrass presence (Fig. 2a). Refer-
ence data were provided as point data at Padilla Bay, WA, and as 
polygon data at the remaining study areas. Reference data were first 
rasterized to match the spatial resolution of the satellite imagery. 
Balanced agreement was used to assess the performance of the satellite 
classifications, which allows for imbalanced class sizes between the bi-
nary classes being compared (Chawla et al., 2004; Daskalaki et al., 
2006). Balanced agreement is computed as the arithmetic mean of 
sensitivity and specificity; sensitivity is the proportion of total satellite 
pixels classified as seagrass where both datasets indicated seagrass 
presence, and specificity is the proportion of total satellite pixels clas-
sified as no seagrass where both datasets indicated seagrass absence. 
Balanced agreement ranges from 0% to 100%, where 100% indicates 
complete agreement between satellite and reference data (Velez et al., 
2007), and was computed using the caret package (Kuhn et al., 2020) in 
R (R Core Team, 2021). 

2.4.2. Reference data indicating seagrass percentage cover 
Currently, there is no generally accepted method for assessing 

agreement between pixel-based classifications and either multi-class or 
continuous reference data; methods presented here offer a statistical 
framework for comparing such datasets. Reference data obtained for 
South Padre Island, TX, specified continuous seagrass percentage cover 
and reference data obtained for Tampa Bay, Florida (FL), Back Sound, 
North Carolina (NC), Mobjack Bay, Virginia (VA), Tangier Sound, 
Maryland (MD), and Belmont Bay, VA, specified ordinal seagrass per-
centage cover (Fig. 2b). Reference data at South Padre Island, TX, were 
provided as points spanning 0%–100% seagrass percentage cover. At 
this study area, the non-parametric Mann-Whitney U test was used to 
assess if reference-indicated seagrass percentage cover was greater in 
satellite pixels classified as seagrass than satellite pixels classified as no 
seagrass (Mann and Whitney, 1947; Wilcoxon, 1945). Results of the 
Mann-Whitney U test were further distilled into an effect size following 
the Glass (1966) formulation of rank-biserial correlation (rrb). The 
resulting effect size was then classified according to the scheme intro-
duced by Cohen (1988) for correlation coefficients where 0.1 ≤ |rrb| <
0.3 indicates a small association between datasets, 0.3 ≤ |rrb| < 0.5 
indicates a moderate association, and |rrb| ≥ 0.5 indicates a large as-
sociation. Large associations between datasets indicate results have 
practical significance, while small associations indicate limited practical 
applications. 

At Tampa Bay, FL, and Back Sound, NC, reference data were pro-
vided as polygons with two ordinal density classes: patchy and contin-
uous (Table S6). At Tampa Bay, FL, seagrass cover between 25% and 
75% was defined as ‘patchy,’ and seagrass cover between 75% and 100% 
was defined as ‘continuous’ (Sherwood et al., 2017). At Back Sound, NC, 

Fig. 2. A flowchart indicating the statistical test used to assess agreement between satellite and reference data when reference data specified (a) seagrass presence 
and (b) seagrass percentage cover. 
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seagrass cover between 5% and 70% was defined as ‘patchy,’ and sea-
grass cover between 70% and 100% was defined as ‘continuous.’ At both 
of these study areas, seagrass cover less than the lower bound of the 
patchy seagrass class—25% at Tampa Bay, FL, and 5% at Back Sound, 
NC—was not delineated in the reference data. For comparison to 
reference data, the satellite classification was first clipped to the 
boundary of each individual reference polygon (Fig. S1). Reference 
polygons with more than 90% of their data classified as no data or with 
less than ten pixels remaining after excluding those categorized as no 
data were discarded before analysis. Next, percentage cover was 
computed within each individual reference polygon as the percentage of 
satellite pixels classified as seagrass out of all valid satellite pixels, where 
valid satellite pixels were those classified as either seagrass or no sea-
grass (i.e., not classified as no data or land). This resulted in two vari-
ables for each reference polygon: an ordinal variable specifying one of 
two reference-indicated density classes and a continuous variable 
specifying satellite-indicated percentage cover. At Tampa Bay, FL, and 
Back Sound, NC, the non-parametric Mann-Whitney U test was used to 
assess if the satellite-indicated seagrass percentage cover for the 
continuous density class was greater than for the patchy density class. 
Again, rrb was used to further distill results of the Mann-Whitney U test 
into an effect size and was interpreted following Cohen (1988). 

At Mobjack Bay, VA, Tangier Sound, MD, and Belmont Bay, VA, 
reference data were provided as polygons with four ordinal density 
classes: 1%–10%, 11%–40%, 41%–70%, and 71%–100% (Table S6). 
Again, the satellite classification was clipped to the boundary of each 
individual reference polygon and percentage cover was computed 
(Fig. S1). This resulted in two variables for each reference polygon: an 
ordinal variable specifying one of four reference-indicated density 
classes and a continuous variable specifying satellite-indicated per-
centage cover. At Mobjack Bay, VA, Tangier Sound, MD, and Belmont 
Bay, VA, the non-parametric Kruskal-Wallis test was used to assess 
agreement between the two datasets (Kruskal and Wallis, 1952). The 
Kruskal-Wallis test assessed if satellite-indicated seagrass percentage 
cover for density classes of 1%–10% seagrass cover, 11%–40%, 41%– 
70%, and 71%–100% were generated from the same population. Results 
of the Kruskal-Wallis test were further distilled into an effect size 
following the Kelley (1935) formulation of epsilon-squared (ε2). The 
resulting effect size was classified according to a modified version of the 
scheme first introduced by Cohen (1988), where 0.01 ≤ |ε2| < 0.08 
indicates a small association between datasets, 0.08 ≤ |ε2| < 0.26 in-
dicates a moderate association, and |ε2| ≥ 0.26 indicates a large asso-
ciation (Mangiafico, 2016). 

Like Analysis of Variance, the Kruskal-Wallis test only determines if 
there is variation in satellite-indicated seagrass percentage cover be-
tween two or more density classes. Therefore, when the Kruskal-Wallis 
test demonstrated that substantive variation was present, post hoc 
pairwise Mann-Whitney U tests were performed to sequentially compare 
satellite-indicated seagrass percentage cover between each of the four 
density classes. The Mann-Whitney U tests were two-tailed, and allowed 
for comparison between satellite and reference data to determine if 
higher estimates of satellite-indicated seagrass percentage cover were 
associated with the higher seagrass density classes in the reference 
datasets. Rank-biserial correlation was computed using the effectsize 
package (Ben-Shachar et al., 2020) and ε2 was computed using the FSA 
package (Ogle et al., 2001), both in R (R Core Team, 2021). 

2.5. Instructional videos 

Instructional videos detailing the processing workflow applied at 
each study area were generated to assist stakeholders in the transition 
from traditional field- and aerial-based mapping efforts to the inclusion 
of satellite data as a monitoring tool for seagrass ecosystems. Instruc-
tional Video 1 illustrates data selection and download using web-based 
data archives (Section 2.3.1). Instructional Video 2 outlines data pro-
cessing to convert basic imagery to an analysis-ready product using 

open-source Python programming (Section 2.3.1). Instructional Video 3 
details the generation of scene-specific ROIs, via ESRI’s ArcGIS Pro, and 
image classification, via Python (Section 2.3.2). These instructional 
videos, required processing scripts, and example data are available for 
download at DOI:10.23719/1528146. 

3. Results 

3.1. Seagrass classification at each study area 

The satellite classification performed best in dense, continuous sea-
grass meadows and served as a suitable spatial representation of sea-
grass distribution within each of the eleven study areas (Figs. 3–5; 
Figs. S2–S9). The satellite classification at Tampa Bay, FL, was partic-
ularly adept at capturing the boundary of seagrass beds, including 
differentiating relatively small patches of sand, rock, and algae from 
neighboring seagrass (Fig. 4). At Back Sound, NC, the satellite classifi-
cation performed well in both patchy and continuous seagrass beds 
when water clarity and depth allowed characterization of the substrate 
(Fig. 5). Many satellite pixels in this image were classified as no data, 
preventing classification as either seagrass or no seagrass, a limitation at 
several other study areas as well, including Mobjack Bay, VA (Fig. S5), 
Tangier Sound, MD (Fig. S6), and Broad Sound, MA (Fig. S8). 

Disagreement between satellite classification and reference data 
occurred primarily in areas of sparse, discontinuous seagrass. At Elkhorn 
Slough, CA, large seagrass meadows across the study area were captured 
by the satellite data, but smaller reference polygons along the southern 
shore of the Slough and in the eastern part of the satellite image were not 
captured (Fig. 3). Additionally, the image classification at Elkhorn 
Slough, CA, did not fully capture the transition between seagrass and 
bare sand in deeper regions. At Izembek Lagoon, AK, patchy seagrass in 
the northeast corner of the satellite image was not captured in its en-
tirety (Fig. S2). Likewise, satellite-indicated seagrass was often not 
captured within reference-indicated low seagrass density polygons 
across the Chesapeake Bay study areas (Mobjack, Bay, VA, Tangier 
Sound, MD, and Belmont Bay, VA; Figs. S5–S7). At Tampa Bay, FL, 
disagreement occurred primarily along the shoreline where reference 
data indicated both patchy and continuous seagrass, but the satellite 
classification indicated land. Some instances of overclassification 
occurred outside of reference polygons, largely due to cloud cover. 
Cloud-free satellite images were preferred, but some cloud cover 
remained at Izembek Lagoon, AK, Tangier Sound, MD, and Nahant Bay, 
MA. Moreover, neither reference data nor the satellite image classifi-
cations included algae in their delineations; therefore, it is possible that 
areas classified as seagrass could be capturing benthic algae. 

3.2. Agreement with reference data 

3.2.1. Seagrass presence agreement assessment 
Balanced agreement ranged between 58% and 86% across the five 

study areas whose reference data indicated seagrass presence and 
absence (Table 2), although collection methods for reference and sat-
ellite data differed, which may limit comparability. Balanced agreement 
was relatively high, 81%, at Izembek Lagoon, AK, despite a large tem-
poral disparity between datasets. Balanced agreement at Padilla Bay, 
WA, was 76%, although reference data were provided as point mea-
surements and therefore do not represent the entire satellite classifica-
tion area. Elkhorn Slough, CA, had the highest balanced agreement of 
these five study areas at 86%. Balanced agreement was lowest at the two 
study areas in MA; at Broad Sound balanced agreement was 72% and at 
Nahant Bay, 58%. Specificity was considerably higher than sensitivity 
across these five study areas, indicating better agreement between 
reference- and satellite-indicated seagrass absence than between refer-
ence- and satellite-indicated seagrass presence. 
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Fig. 3. Seagrass classification results for Elkhorn Slough, California, located in the Temperate North Pacific seagrass bioregion: (a) A WorldView-2 satellite image 
acquired on 28 October 2017 overlaid with reference data delineating seagrass presence collected in summer 2018 and (b) image classification results for the 
WorldView-2 image shown in (a). 

Fig. 4. Seagrass classification results for Tampa Bay, Florida, located in the Tropical Atlantic seagrass bioregion: (a) A WorldView-2 satellite image acquired on 17 
November 2016 overlaid with reference data delineating patchy and continuous seagrass collected in January 2016 and (b) image classification results for the 
WorldView-2 image shown in (a). 
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3.2.2. Seagrass percentage cover agreement assessment 
At South Padre Island, TX, results of the Mann-Whitney U test and 

associated rank-biserial correlation demonstrated that reference- 
indicated seagrass percentage cover was substantially higher in satel-
lite pixels classified as seagrass than in satellite pixels classified as no 
seagrass, indicating a strong correlation between datasets (Fig. 6a; 
Table 3; U = 291, N = 74, |rrb| = 0.53). For satellite pixels classified as 
no seagrass, reference data had a median seagrass percentage cover of 
42%. As expected, reference-indicated seagrass percentage cover cor-
responding to satellite pixels classified as seagrass was higher, with a 
median of 86%. 

At Tampa Bay, FL, results of the Mann-Whitney U test and associated 
rank biserial correlation demonstrated that satellite-indicated seagrass 
percentage cover was substantially higher in reference-indicated 

continuous seagrass polygons than in reference-indicated patchy sea-
grass polygons, indicating a strong correlation between datasets 
(Fig. 6b; Table 3; U = 2204.5, N = 218, |rrb| = 0.52). Satellite-indicated 
seagrass percentage cover within patchy seagrass polygons had a me-
dian of 50%, equivalent to the average of the reference-indicated patchy 
seagrass class upper and lower bounds, which spans 25%–75%. Satellite- 
indicated seagrass percentage cover within continuous seagrass poly-
gons had a median of 94%, within the reference data range of 75%– 
100%. However, several statistical outliers exist where satellite- 
indicated seagrass percentage cover corresponding to reference- 
indicated continuous seagrass was below 50%. 

Similarly, at Back Sound, NC, results of the Mann-Whitney U test and 
associated rank biserial correlation demonstrated that satellite- 
indicated seagrass percentage cover was substantially higher in 
reference-indicated continuous seagrass polygons than in reference- 
indicated patchy seagrass polygons, indicating a strong correlation be-
tween datasets (Fig. 6c; Table 3; U = 189, N = 74, |rrb| = 0.83). Satellite- 
indicated seagrass percentage cover within patchy seagrass polygons 
had a median of 42%, consistent with the reference data range of 5%– 
70%. Satellite-indicated seagrass percentage cover within continuous 
seagrass polygons had a median of 100%. Statistical outliers in satellite- 
indicated seagrass percentage cover existed below approximately 95%, 
but all statistical outliers were still within the reference data range of 
70%–100%. 

After removing reference polygons with more than 90% of their data 
classified as no data and those with less than 10 valid satellite pixels, 
insufficient data remained at Belmont Bay, VA, for statistical analysis. 
For reference-indicated percentage cover classes of 1%–10%, 11%–40%, 
41%–70%, and 71%–100%, sample sizes were 1, 2, 1, and 16, respec-
tively. The minimum sample size suggested for applying the Kruskal- 
Wallis test to compare four classes is 24 (Dwivedi et al., 2017), with a 
minimum of 5 observations per group (Mundry and Fischer, 1998). 
Since these sample size criteria were not met, the classification at Bel-
mont Bay, VA, was not statistically assessed using the Kruskal-Wallis 

Fig. 5. Seagrass classification results for Back Sound, North Carolina, located in the Temperate North Atlantic seagrass bioregion: (a) A WorldView-2 satellite image 
acquired on 27 March 2013 overlaid with reference data delineating patchy and continuous seagrass collected in May 2013 and (b) image classification results for the 
WorldView-2 image shown in (a). 

Table 2 
Balanced agreement for study areas delineating seagrass presence and absence; n 
is sample size.  

Study 
area 

Reference 
class 

Reference 
n 

Sensitivity Specificity Agreement 

Izembek 
Lagoon, 
AK 

Seagrass 17,188,571 67% 95% 81% 
No 
seagrass 

45,228,056    

Padilla 
Bay, 
WA 

Seagrass 8244 64% 88% 76% 
No 
seagrass 

28,911    

Elkhorn 
Slough, 
CA 

Seagrass 32,245 73% 100% 86% 
No 
seagrass 

15,615,478    

Broad 
Sound, 
MA 

Seagrass 328,005 48% 97% 72% 
No 
seagrass 

750,007    

Nahant 
Bay, 
MA 

Seagrass 56,069 17% 98% 58% 
No 
seagrass 

290,421     
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test, but average satellite-indicated seagrass percentage cover was 
compared qualitatively to reference data. At Belmont Bay, VA, satellite 
imagery slightly underestimated seagrass percentage cover when 
compared to reference data for the lowest three density classes. 
Satellite-indicated seagrass percentage cover was 0% for the one 
reference-indicated polygon with 1%–10% seagrass cover, had a median 
of 3% for the two reference-indicated polygons with 11%–40% seagrass 
cover, and was 21% for the one reference-indicated polygon with 41%– 
70% seagrass cover. For the highest density class, satellite-indicated 
seagrass percentage cover was within the reference data range, with a 
median of 72%. 

At Mobjack Bay, VA, results of the Kruskal-Wallis test and associated 
epsilon-squared demonstrated that associations between satellite- 
indicated seagrass percentage cover across the four seagrass density 

classes were large (Fig. 7a; Table 3; χ2 = 31.74, N = 100, |ε2| = 0.14). 
Since associations were large, the post hoc pairwise Mann-Whitney U 
test was applied (Fig 7a; Table S7). Results showed that satellite- 
indicated seagrass percentage cover was higher within reference poly-
gons in the highest seagrass density class (71%–100%) than reference 
polygons with 1%–10% (U = 53, N = 37, |rrb| = 0.68), 11%–40% (U =
119, N = 64, |rrb| = 0.66), and 41%–70% (U = 114, N = 51, |rrb| = 0.64) 
seagrass cover. Satellite imagery underestimated seagrass percentage 
cover compared to reference data within the lowest three density clas-
ses; all satellite-indicated seagrass percentage covers had a median of 
0%, although statistical outliers at higher seagrass percentage covers 
existed. For the reference-indicated highest density class, satellite- 
indicated seagrass percentage cover had a median of 66%, just below 
the reference data range of 71%–100%. 

At Tangier Sound, MD, associations between satellite-indicated sea-
grass percentage cover across the four seagrass density classes were 
moderate (Fig. 7b; Table 3; χ2 = 7.59, N = 57, |ε2| = 0.32). The post hoc 
pairwise Mann-Whitney U test showed that satellite-indicated seagrass 
percentage cover was substantially higher within reference polygons in 
the highest seagrass density class (71%–100%) than reference polygons 
with 1%–10% (U = 16, N = 18, |rrb| = 0.56) and 11%–40% (U = 40, N =
26, |rrb| = 0.52) seagrass cover (Fig. 7b; Table S7). Substantial associ-
ations were also found between the third density class (41%–70%) and 
both 1%–10% (U = 49, N = 31, |rrb| = 0.35) and 11%–40% (U = 110, N 
= 39, |rrb| = 0.37) seagrass cover, although these associations were 
moderate. Satellite-indicated seagrass percentage cover within refer-
ence polygons with 1%–10% cover and 11%–40% cover were similar, 
with medians of 3% and 5%, respectively, and both fell within the 
reference data range for the lowest density class. For reference polygons 
with 41%–70% seagrass cover, satellite results had a median of 54% and 
for those with 71%–100% seagrass cover, a median of 78%, both of 
which were within the reference data ranges. 

4. Discussion 

Satellite imagery from WorldView-2 and WorldView-3 was used to 
classify seagrass presence and absence at eleven coastal study areas 
across the continental United States, advancing satellite remote sensing 
of seagrass ecosystems to NASA’s second validation stage, which de-
scribes when a product’s performance has been assessed against field 
programs over additional locations and time periods (NASA, 2022a). 
This study presents a spatially comprehensive assessment of satellite 
remote sensing for seagrass mapping, marking a significant step toward 
the use of satellite imagery to refine global estimates of seagrass 
coverage (Duarte, 2017) and carbon storage capacity (Fourqurean et al., 

Fig. 6. Boxplots representing (a) reference-indicated seagrass percentage cover corresponding to satellite-derived classifications of no seagrass and seagrass at South 
Padre Island, Texas (TX), and satellite-indicated seagrass percentage cover corresponding to reference-indicated patchy and continuous seagrass percentage cover at 
(b) Tampa Bay, Florida (FL), and (c) Back Sound, North Carolina (NC). 

Table 3 
Results of agreement assessments between satellite-derived seagrass classifica-
tions and reference-indicated seagrass; n is sample size. Statistical comparison 
was not performed at Belmont Bay, Virginia (VA), due to insufficient sample 
size.  

Mann-Whitney U test and associated rank-biserial correlation (rrb) 

Study area Class n Median |rrb| Associationa 

South Padre Island, TX No seagrass 26 42% 0.53 Large 
Seagrass 48 86% 

Tampa Bay, FL Patchy 161 50% 0.52 Large 
Continuous 57 94% 

Back Sound, NC Patchy 53 42% 0.83 Large 
Continuous 41 100% 

Kruskal-Wallis test and associated epsilon-squared (ε2) 

Study area Class n Median |ε2| Association 
b 

Mobjack Bay, VA 1%–10% 16 0% 0.32 Large 
11%–40% 33 0% 
41%–70% 30 0% 
71%–100% 21 66% 

Tangier Sound, MD 1%–10% 6 3% 0.14 Moderate 
11%–40% 14 5% 
41%–70% 25 54% 
71%–100% 12 78% 

Belmont Bay, VA 1%–10% 1 0% N/A N/A 
11%–40% 2 3% 
41%–70% 1 21% 
71%–100% 16 72%  

a rrb was interpreted following Cohen (1988). 
b ε2 was interpreted following a variation on Cohen (1988) described in 

Mangiafico (2016). 
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2012), and to manage and protect seagrasses and their ecosystem ser-
vices (Bell et al., 2007; Duarte, 2002; Neckles et al., 2012). This study 
assessed agreement between satellite image classifications and spatially 
concurrent reference data; understanding differences between these 
datasets is critical for improving future assessments of satellite classifi-
cation performance and for understanding appropriate applications of 
satellite imagery as a complementary management tool for monitoring 
seagrass ecosystems. 

Satellite image classification performed best in areas of continuous 
seagrass. Balanced agreement indicated that similarities between satel-
lite classifications and reference datasets ranged from 58% to 86%, and 
seagrass absence was classified with better agreement than seagrass 
presence. Comparisons at Izembek Lagoon, AK, and Belmont Bay, VA, 
are particularly suitable given reference data at each of these study areas 
was generated using satellite remote sensing. Seagrass presence at 
Izembek Lagoon, AK, was delineated from 30 m Landsat imagery 
(Hogrefe et al., 2014). Seagrass density ranges at Belmont Bay, VA, were 
photointerpreted from the same WorldView-2 scene used in this study 
(Orth et al., 2019), although insufficient sample size prevented a sta-
tistical comparison of results at this study area. 

Disagreement between satellite image classifications and reference 
data in areas of sparse seagrass can be the result of overestimation of 
seagrass coverage in reference datasets (Meehan et al., 2005) or un-
derestimation of seagrass coverage through image classification. Addi-
tional data would be needed to quantify each of these components. At 
study areas whose reference data indicated seagrass presence and 
absence, relatively low sensitivity, ranging from 17% to 73%, compared 
to specificity, ranging from 88% to 100%, suggested heterogeneity 
within seagrass reference polygons. The Mann-Whitney U and 
Kruskal-Wallis tests demonstrated that satellite data can be used to map 
seagrass across varying coverage densities, although performance was 
best in areas with high seagrass percentage cover. Underestimation of 
seagrass cover at Izembek Lagoon, AK, occurred in areas with less than 
approximately 30% seagrass cover (Ward and Amundson, 2019). 

Patchy seagrass can be an important indicator of either increasing 
(Bell et al., 2007) or decreasing seagrass coverage (Duarte et al., 2007), 
but patchy seagrass is difficult to characterize with both satellite remote 
sensing (Baumstark et al., 2016; Carpenter et al., 2022; Green et al., 
1996; Hill et al., 2014; Knudby and Nordlund, 2011; Phinn et al., 2008; 
Pu et al., 2014; Pu and Bell, 2013) and aerial imagery (Kaufman and 
Bell, 2020; McKenzie et al., 2001; Meehan et al., 2005). In satellite 
imagery, patchy seagrass is likely underestimated because each satellite 

pixel captures the average brightness for all features within that pixel 
(Bhatta, 2013). Even though many satellite pixels can contain a mix of 
several classes, especially in patchy seagrass environments, the DCNN 
used in this study assigns one class to each pixel. In some cases, smaller 
features can dominate the brightness within a satellite pixel, becoming 
detectable even at sub-pixel scales (Brown et al., 2000; Phinn et al., 
2002; Xian and Crane, 2005). Therefore, satellite pixels classified as no 
seagrass do not necessarily represent 0% seagrass coverage, but instead 
indicate that the spectral signature of other constituents within the 
satellite pixel outweighed the spectral signature of seagrass. Previous 
studies have classified patchy and continuous seagrass separately, but 
with lower efficacy (Knudby and Nordlund, 2011; Pu et al., 2014). The 
threshold at which seagrass dominates measured reflectance for a sat-
ellite pixel is not quantified (Thomas and Allcock, 1984) and can be 
dependent on many factors, including contrast with the surrounding 
environment (Barrell et al., 2015). As satellite technology continues to 
improve, platforms offering hyperspectral data collection in combina-
tion with high spatial resolution will likely improve classification of 
patchy seagrass environments. 

Temporal offsets between reference and satellite data also varied 
widely across study areas, ranging from several months to 16 years. In 
the absence of temporally coincident reference and satellite data, the 
effect of seasonal and annual offsets between datasets cannot be quan-
tified and interim conditions can vary widely; for example, Johnson 
et al. (2021) noted a substantial decline in submerged aquatic vegetation 
across the lower Chesapeake Bay following record rainfall and warmer 
temperatures in 2018. At Tampa Bay, FL, reference data was derived 
from aerial photography acquired in January 2016 while satellite im-
agery was acquired in November 2016. According to TBEP (2020), 
Tampa Bay seagrass coverage declined 3% from 2016 to 2018; Old 
Tampa Bay, the primary focus of our image classification, made up 31% 
of this decline. This documented decline could explain the instances of 
underestimation of seagrass cover compared to reference data, given the 
temporal offset between datasets. At Broad Sound, MA, and Nahant Bay, 
MA, satellite images were acquired five years after reference data was 
collected, and spatial shifts in seagrass cover over this time period 
cannot be differentiated from satellite classification error. Additionally, 
the satellite platform used may have decreased balanced agreement at 
Broad Sound, MA, and Nahant Bay, MA, as these study areas were the 
only two at which a WorldView-3 image was used. Coffer et al. (2022) 
noted that WorldView-3 could be less appropriate for aquatic applica-
tions than WorldView-2 because of its lower signal-to-noise ratio, which 

Fig. 7. Boxplots representing satellite-indicated seagrass percentage cover corresponding to reference-indicated seagrass percentage cover classes at (a) Mobjack 
Bay, Virginia (VA), and (b) Tangier Sound, Maryland (MD). Horizontal lines above each set of boxplots illustrate results of the post hoc pairwise Mann-Whitney U 
test, where moderate (*) and large (**) associations between classes were found (see Table S7). 
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can decrease classification performance (Gowdra et al., 2020). 
Agreement between satellite and reference data was lower in deeper 

areas and in instances of poor water clarity. Classification accuracy 
typically decreases at depth due to light attenuation (Dekker et al., 2005; 
Hogrefe et al., 2014; Phinn et al., 2008), which makes bottom features 
appear spectrally similar (Sagawa et al., 2008). Dekker et al. (2005) 
found that seagrass was detectable with Landsat up to depths of 2.4 m in 
clear water but only 0.7 m in turbid water. Kuhwald et al. (2022) found 
poorer classification accuracy at depths greater than 4 m. Poor water 
clarity prevented image-wide characterization of the aquatic substrate 
at several study areas, particularly those located in the Temperate North 
Atlantic seagrass bioregion. The no data flag proposed here acts as a 
quality flag to identify satellite pixels unusable for seagrass detection in 
each image. The ability to spectrally differentiate obfuscated water from 
seagrass allows satellite images to still be used even if they are collected 
when optical conditions within the water column are not ideal across 
some portion of those images. This is analogous to automated cloud 
masking, which removes portions of an image that are contaminated by 
clouds and retains the remainder of the image for subsequent analysis. In 
future efforts, repeated satellite image acquisitions over the same loca-
tion could be mosaicked to generate a full-scene classification, exploit-
ing more suitable optical conditions across time. 

This study assessed the performance of a satellite classification 
approach by comparing results to reference data. However, there are 
important distinctions between these collection methods that may limit 
their comparability, primarily due to differences in spatial data types: 
satellite classifications are generated on a pixel-by-pixel basis, while 
reference data are often provided as point, line, or polygon shapefiles. 
Kenworthy et al. (1982) described the hypothetical gradient of seagrass 
bed development, which included unvegetated areas, patches of sea-
grass, the edge of a continuous meadow, and the interior zone of the 
continuous cover of vegetation. Polygon-based methods of seagrass 
delineation can lead to overestimation of seagrass coverage along this 
gradient, as areas of both seagrass and bare sand are amalgamated 
(Meehan et al., 2005). MassDEP, for example, generates seagrass poly-
gons encompassing heterogeneous regions characterized by patchy 
seagrass intermixed with bare sand (Costello and Kenworthy, 2011); this 
led to low sensitivity at Broad Sound, MA, and Nahant Bay, MA, despite 
high specificity. VIMS classifies seagrass bed density into one of four 
density classes through visual comparison with a density scale that is 
analogous to those used for estimating forest crown cover within aerial 
photography (Paine and Kiser, 2012; VIMS, 2022). For study areas 
located in the Chesapeake Bay, the number of seagrass density classes 
defined in the reference data likely reduced agreement with satellite 
classifications. Pu et al. (2012) found worse classification performance 
when satellite results were parsed into 5 seagrass density classes versus 3 
seagrass density classes. 

The establishment of a consistent seagrass monitoring approach is 
crucial for closing spatial gaps in global seagrass mapping (Duffy et al., 
2019; McKenzie et al., 2020). In addition to differences in data collec-
tion methods, reference data also included multiple spatial data types 
and seagrass classification types. Moreover, reference programs vary in 
their definitions of seagrass presence and bed edge. The Washington 
State Department of Natural Resources (WADNR) detailed existing 
criteria implemented by nine different agencies (WADNR, 2013). Two 
examples include the OSPAR Commission, which considers seagrass 
patches less than 10 m apart to be the same meadow, and the Tampa Bay 
Estuary Program, which proposed seagrass beds be defined as at least 
10% cover within a 10- to 30-m transect line. Alternative definitions 
have also been suggested that consider seagrass seed dispersal distance, 
rhizome extension distance, and both historic and potential seagrass 
habitat. WADNR proposed seagrass mapping criteria that extends the 
edge of a seagrass bed 0.5 m beyond the last shoot found (WADNR, 
2013). The image processing and classification regime presented here 
successfully classified seagrass presence and absence using a standard-
ized, consistent approach across varying seagrass bioregions, 

atmospheric conditions, and optical water types, suggesting the poten-
tial for regional, and even global, applicability. In future comparisons 
between satellite- and reference-based seagrass maps, satellite image 
classifications can be revised to extend assumptions used in reference 
data delineation for a given area to reduce methodological differences 
between datasets. 

Limitations associated with the application of satellite remote 
sensing for seagrass mapping include the inability to collect optical 
satellite imagery of Earth’s surface during cloudy conditions, depth 
constraints at which the satellite signal becomes fully attenuated, and 
difficulty aligning satellite image acquisition with the preferred tidal 
stage for seagrass mapping. Satellite overpasses typically occur around 
midday local time, which does not always coincide with low tide (see 
Table S2). This is in contrast with more opportunistic approaches like 
aerial image acquisition, which usually occurs within 60 to 90 minutes 
of low tide (Costello and Kenworthy, 2011; Orth et al., 2010). While 
tidal stage may not affect satellite-derived seagrass extent (Lebrasse 
et al., 2022), the deep edge of seagrass coverage was commonly mis-
characterized in the present study due to spectral similarity at increasing 
water depth. Moreover, Stekoll et al. (2006) suggested biomass char-
acterization may require image acquisition at consistent tidal stages. 
Finally, WorldView-2 and WorldView-3 do not continuously collect 
imagery due to limitations in data storage and transmission. Instead, 
imagery can either be acquired through their archive or by tasking the 
satellite for a given date and location (Coffer et al., 2022), although 
tasking does not guarantee a given request will be fulfilled (Landry et al., 
2021). This study focused on identifying seagrass coverage but did not 
offer species differentiation within or among study areas. Species dif-
ferentiation can be important in refining carbon storage estimates 
because seagrass species sequester carbon at different rates. Multispec-
tral satellite imagery may be insufficient for achieving species identifi-
cation within seagrass communities due to similar spectral 
characteristics. Instead, hyperspectral imagery is often needed for 
separating plant pigment types. 

Future work should focus on expanding this demonstration across 
time and space. Across time, this approach can be applied to time series 
analyses and for regional seagrass mapping combining several over-
lapping satellite images. Across space, while three of six global seagrass 
bioregions were represented in this study, additional assessments of 
classification performance are necessary, particularly outside of the 
United States. Methods can then be extended to estimate large-scale 
seagrass coverage, including generating global datasets of seagrass 
ecosystems. Moreover, testing the transferability of ROIs could further 
increase accessibility to satellite imagery by reducing user input in the 
overall processing chain. Subsequent studies assessing satellite classifi-
cation performance may consider applying a threshold to minimize the 
temporal offsets between reference and satellite data as interim condi-
tions can vary widely. Additionally, as new satellite resources become 
available, methods presented in this study can be applied to satellite 
platforms offering improved resolutions. For example, Planet’s Super-
Dove satellite constellation can be used for more consistent data 
collection and offers similar spectral bands compared to WorldView-2 
and WorldView-3. Future work should also include developing moni-
toring applications leveraging emerging satellite technology to allow for 
consistent, repeated images that can inform event-based, seasonal, and 
interannual assessments. Transferring methods presented here to satel-
lite platforms offering more consistent and frequent image acquisition 
represents the next step for furthering scientific advancements and 
operationalizing management applications. 

5. Conclusions 

This study tested an image classification framework for seagrass 
presence and absence at eleven coastal study areas across the conti-
nental United States. The intent of this study was not to further validate 
DCNN model performance, but to demonstrate the ability to apply the 
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same methods across multiple study areas and satellite images, repre-
senting a continental-scale range of seagrass bioregions, atmospheric 
conditions, and water optical properties. This marks a significant step 
toward developing an operational approach for mapping seagrass 
coverage at the national and global scales and contributes toward Stage 
2 Validation as defined by NASA’s data maturity levels. The accompa-
nying instructional videos, required processing scripts, and example 
data are available for download at DOI:10.23719/1528146. 

Satellite imagery has the potential to complement traditional sea-
grass mapping efforts but does not have the ability to fully replace 
localized seagrass mapping, particularly when using satellite platforms 
that have been evaluated in this study given their limited temporal 
resolution. Instead, this transition should parallel that of weather fore-
casting. Weather forecasting skill has increased globally over the past 40 
years, primarily due to the inclusion of satellite imagery (Bauer et al., 
2015). Satellite imagery and local observations are used to initiate nu-
merical weather prediction models. The National Weather Service then 
generates local forecasts by analyzing and scrutinizing model output 
using localized, individual scientific expertise (NWS, 2022). This study 
offers a similar approach where satellite image classifications can be 
used as a standardized, initial indication of seagrass presence and 
absence. Local management can then adjust these pixel-based maps 
using their expert knowledge of specific study areas. In areas lacking 
localized expertise, satellite imagery can serve as an adequate repre-
sentation of seagrass presence and absence to improve regional and 
global estimates of seagrass coverage and Blue Carbon storage (CEC, 
2016). Moving forward, satellite estimates of seagrass coverage can be 
used in combination with known drivers of seagrass coverage such as 
water temperature and clarity as inputs for predictive models fore-
casting future changes in seagrass extent. 

The information presented in this manuscript and the instructional 
videos included in the supplemental material can assist stakeholders in 
developing local seagrass monitoring programs. As general guidance, 
the following steps are recommended.  

(1) Access Maxar imagery: WorldView-2 or WorldView-3 imagery can 
be acquired either using archived imagery (Supplemental Video 
1, Section 2.3.1) or by tasking the satellite for a specific date and 
location (Coffer et al., 2022; Landry et al., 2021). 

(2) Process satellite imagery: To increase spectral separability of clas-
ses, satellite imagery should be processed to create a radiomet-
rically and atmospherically corrected product (Supplemental 
Video 2, Section 2.3.1).  

(3) Classify satellite imagery: A previously validated machine learning 
classifier, such as that presented in Islam et al. (2020, 2018), can 
be applied to the imagery to separate satellite pixels into the 
desired classes (Supplemental Video 3, Section 2.3.2). Classes can 
be tailored to fit the specifications of a location or region. 

(4) Assess agreement: This manuscript presented a statistical frame-
work for comparing satellite and reference data (Section 2.4). 
Methods for both point- and polygon-based reference data of 
seagrass presence and percentage cover are presented and can be 
used to assess agreement between the machine learning classifier 
and other seagrass mapping methods. 
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